PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH ISEMESTER END REGULAR EXAMINATIONS, JAN - 2023
ELECTROMAGNETIC FIELDS
(EEE Branch)
Time: 3 hours
Max. Marks: 70
Answer all the questions from each UNIT (5X14=70M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
1.	a)	Derive the Relationship between electric field and electric potential.	[7M]	1	
	b)	Obtain the expression for electric field intensity and potential due to an electric dipole.	[7M]	1	
OR					
2.	a)	Using Gauss law, derive the expression for electric field intensity due to an infinite length of line charge.	[7M]	1	
	b)	Two 6nC point charges are located at $(1,0,0)$ and $(-1,0,0)$ in free space. i) Find V at $\mathrm{P}(0,0, z)$ ii) Find $V \max$	[7M]	1	
UNIT-II					
3.	a)	Derive the boundary conditions for a dielectric interface.	[7M]	2	
	b)	Derive the expressions for the capacitance of a parallel plate capacitor and the energy stored in it.	[7M]	2	
OR					
4.	a)	A dielectric sphere of $\varepsilon r=5.7$ and of radius 10 cm has a point charge $2 \mu \mathrm{C}$ placed at its centre. Calculate the surface density of polarization charge on the surface of the sphere.	[7M]	2	
	b)	A parallel plate capacitor having a mica dielectric $\varepsilon \mathrm{r}=6$, plate area of 625 cm^{2} and a separation of 2.5 cm , a potential of 100 VX is applied. Find the energy stored in the capacitor.	[7M]	2	
UNIT-III					
5.	a)	Derive the magnetic field intensity due to an infinite length current carrying conductor by using Biot Savart's law.	[7M]	3	
	b)	Derive the expression for magnetic field intensity due to infinitely long coaxial transmission line. Use ampere circuital law.	[7M]	3	
OR					
6.	a)	Find H at the centre of an equilateral triangle loop of side 4 m carrying 5 A of current lying in $\mathrm{x}=0$ plane and the centroid lies along z axis.	[7M]	3	
	b)	A current filament carrying 15 A in a_{z} direction lies along entire Z-axis. Find magnetic field intensity at: i) $\mathrm{A}(20,0,4)$ ii) $\mathrm{B}(-2,4,-4)$.	[7M]	3	
UNIT-IV					
7.	a)	Derive the expressions for the self inductances of a solenoid and a toroid.	[7M]	4	
	b)	Two parallel current carrying conductors separated by a distance of 4 m carries current of 10 A and 15 A in opposite directions. Find the force on each conductor. Find the field intensity at mid-point between the two conductors.	[7M]	4	
OR					

